A Finite Element Method for Elliptic Equations on Surfaces
نویسندگان
چکیده
Abstract. In this paper a new finite element approach for the discretization of elliptic partial differential equations on surfaces is treated. The main idea is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a flow problem in an outer domain that contains the surface. We give an analysis that shows that the method has optimal order of convergence both in the H and in the L-norm. Results of numerical experiments are included that confirm this optimality.
منابع مشابه
Finite Element Approximation of Elliptic Partial Differential Equations on Implicit Surfaces
The aim of this paper is to investigate finite element methods for the solution of elliptic partial differential equations on implicitely defined surfaces. The problem of solving such equations without triangulating surfaces is of increasing importance in various applications, and their discretization has recently been investigated in the framework of finite difference methods. For the two most...
متن کاملAn Eulerian Finite Element Method for Elliptic Equations on Moving Surfaces
In this paper a new finite element approach for the discretization of elliptic partial differential equations on surfaces is treated. The main idea is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a flow problem...
متن کاملEulerian finite element method for parabolic PDEs on implicit surfaces
We define an Eulerian level set method for parabolic partial differential equations on a stationary hypersurface Γ contained in a domain Ω ⊂ Rn+1. The method is based on formulating the partial differential equations on all level surfaces of a prescribed function Φ whose zero level set is Γ . Eulerian surface gradients are formulated by using a projection of the gradient in Rn+1 onto the level ...
متن کاملA level-set method for computing the eigenvalues of elliptic operators defined on closed surfaces
We reduce the calculation of the eigenvalues of an elliptic operator defined on a closed and bounded surface in R to the solution of an elliptic eigenvalue problem in divergence form in R via separation of variables and estimates from semi-classical analysis. By representing the surface implicitly, we solve the latter problem using standard finite element methods on a regular mesh. In an append...
متن کاملBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009